
COSC 061 - Winter 2025 - Dartmouth College

MongoDB
Horizontal scaling with Sharding

Not even Mongo, just a file system

Simple Doc Store

With replication, the database
becomes more resilient to
hardware problems, network
outages, improved READ
performance, and even geopolitical
issues.

Simple MongoDB

Add more …

• storage

• memory

• CPU power

• = $$$$

• Cloud providers only offer
certain configurations

Vertical Scaling

Partition the database into chunks
stored on different servers

Add additional servers to increase
capacity as required.

The overall speed or capacity of a
single machine may not be high,
but focusing groups of servers on
each part improves performance.

Horizontal scaling

Expanding the capacity of the
deployment only requires adding
additional servers

Not necessarily faster or bigger

No special hardware

The trade off is increased complexity
in infrastructure and maintenance  
for the deployment.

Horizontal scaling: mongoDB sharding

The shard key is used to
distribute the collection's
documents across
shards.

The shard key consists of
a field or multiple fields in
the documents.

Higher cardinality is
better

Sharding

Careful selection of the
shard key is essential

The resulting distribution
affects the efficiency and
performance of
operations

An ideal shard key
distributes documents
evenly while also  
facilitating common query
patterns.

Sharding

Cardinality is the
maximum number of
chunks the balancer can
create

Each shard key can only
exist on one chunk at any
time

Shard key characteristics
Low cardinality skews the distribution

Frequency of the shard key
represents how often a
given shard key value
occurs in the data.

Shard key characteristics
High frequency skews the distribution

A shard key on a
monotonically changing
value is more likely to
distribute inserts to a
single chunk within the
cluster.

Shard key characteristics
Monotonically changing keys skew as well

The MongoDB balancer
monitors the amount of data on
each shard in a collection.

It will attempt to migrate data
between shards to keep
accesses balanced

If one chunk is getting too big
(>64MB), mongos will split it
into multiples

Shard key characteristics

Balancer migrating data between shards

• mongod runs
replicas

• Config servers
manage the shards

• mongos routes
queries to shards

Sharding

To Shard or not to Shard ?
Sharing is complicated, make sure you really need it

• Running out of disk space and can’t add more?

• MongoDB works best with indexes and most common queries are kept
resident in RAM.

• If you start running out of RAM, your queries will slow down and your
memory accesses will begin to thrash

Shard keys are (almost) forever
• Changing a shard key impacts performance while it's happening

• Must have sufficient cardinality - sharding across n replicas won’t work if the
shard key cardinality is < n

• Unique attributes should be part of the shard key, since otherwise MongoDB
can’t ensure the required uniqueness since shards are independent

• Shards only index on _id and the shard key, since using any other field would
require inter-shard communication

• If distribution of shard keys isn’t uniform (across shards), consider a multi-field
composite shard key with the better key first.

